close
ویزای ایران
هیدروژن ( Hydrogen )

Home
نرمالیته
نرمالیته

درباره سایت ضمن عرض سلام و خوش آمد گویی به شما بازدیدكنندگان عزیز، این سایت متعلق به هیچ سازمانی نمیباشد و هدف از تشکیل این سایت گردآوری اطلاعات پایه و مورد نیاز برای دانشجویان رشته شیمی کاربردی می باشد . میل های سایت برای برقراری ارتباط omid.alaedin@hotmail.com منتظر نظرات و انتقاد های شما هستیم . .

تماس با ما

ارسال پیامک

تبلیغات

موضوعات

شیمی شیمی آلی شیمی تجزیه شیمی فیزیک شیمی معدنی شیمی صنعتی شیمی عمومی شیمی نانو شیمی پلیمر تجزیه دستگاهی زبان تخصصی شیمی آموزش شیمی خواص مواد غذایی شیمی رنگ شیمی نفت خوردگی شیمی دارویی فیتو شیمی شیمی آلی فلزی اصول تصفیه آب و پسابهای صنعتی شیمی آب الکتروشیمی عناصر جدول تناوبی شیمی هسته ای کارگاه شیشه گری مواد معدنی دانلود نرم افزار شیمی دانلود کتاب شیمی دانلود مقالات شیمی جزوات شیمی و پیام نور اطلاعات فنی و حفاظت ایمنی مواد کنکور و المپیاد امتحان نهایی عکس های شیمی اخبار علمی اخبار شیمی مقالات ترجمه شده توسط نرمالیته بیوگرافی شیمیدانها گرایش های رشته شیمی بیماری ها پرسش و پاسخ متفرقه مجله تصویری فلش بک آزمایشگاه گزارشکار های آزمایشگاه شیمی عمومی وسایل آزمایشگاهی گزارشکار های آزمایشگاه شیمی آلی گزارشکار های آزمایشگاه شیمی معدنی گزارشکار های آزمایشگاه شیمی فیزیک گزارشکار های آزمایشگاه شیمی تجزیه گزارشکار های آزمایشگاه فیزیک گزارشکار های آزمایشگاه تجزیه دستگاهی مواد شیمایی آلی هیدرو کربنهای ساده هیدروکربنهای نیتروژن دار هیدرو کربنهای اکسیژن دار کلیپ های شیمی کلیپ های آموزشی آزمایش های جالب شیمی

آمار سایت

کل مطالب : 800
کل نظرات : 971
تعداد اعضا : 10675

آمار بازدید
بازدید امروز : 6,889
باردید دیروز : 6,063
ورودی امروز گوگل : 1793
ورودی دیروز گوگل : 1502
بازدید هفته : 30,960
بازدید ماه : 56,038 نفر
بازدید سال : 1,602,149
بازدید کل : 5,446,133
..... افراد آنلاین .....


دوستان ما

    اف تمز اف تمز اف تمز اف تمز اف تمز اف تمز اف تمز اف تمز اف تمز اف تمز اف تمز اف تمز اف تمز اف تمز اف تمز

ویژه ها



آخرین ارسال های انجمن

آخرین ارسال های انجمن

هیدروژن ( Hydrogen )

 

 

هیدروژن یا آبزا، با نماد شیمیایی H نام یک عنصر شیمیایی در جدول تناوبی با عدد اتمی ۱ است. وزن اتمی این عنصر ۱٫۰۰۷۹۴ u است. هیدروژن سبک‌ترین عنصر در جهان است و بیش از دیگر عنصرها می‌توان آن را به صورت آزاد در طبیعت پیدا کرد. می‌توان گفت نزدیک به ۷۵% از جرم جهان از هیدروژن ساخته شده‌است. برخی جرم‌های آسمانی مانند کوتولهٔ سفید و یا ستاره‌های نوترونی از حالت پلاسمای هیدروژن ساخته شده‌اند. ولی در طبیعت روی زمین به سختی می‌توان تک اتم هیدروژن را پیدا کرد.

ایزوتوپی از هیدروژن که بیشتر دیده می‌شود، پروتیوم نام دارد (بیشتر از نماد آن ۱H یاد می‌شود تا نام آن) این ایزوتوپ، یک پروتون دارد و نوترونندارد و در ترکیب‌های یونی می‌تواند بار منفی (آنیون هیدرید با نماد -H) به خود بگیرد. همچنین بار مثبت آن نیز به صورت +H یافت می‌شود که در این صورت تنها از یک پروتون ساده ساخته شده‌است. البته در حقیقت بدست آوردن کاتیون هیدروژن در ترکیب‌های پیچیده تری ممکن می‌شود.

عنصر هیدروژن با بیشتر عنصرها می‌تواند ترکیب شود و می‌توان آن را در آب، تمامی ترکیب‌های آلی و موجودات زنده پیدا کرد. این عنصر درواکنش‌های اسید و قلیایی در بسیاری واکنش‌ها با داد و ستد پروتون میان مادهٔ حل شدنی و حلال نقش مهمی از خود نشان می‌دهد. هیدروژن به عنوان ساده ترین عنصر شناخته شده در دانش نظری بسیار کمک کار بوده‌است، برای نمونه از آن در حل معادلهٔ شرودینگر و یا در مطالعهٔ انرژی و پیوند و در نهایت پیشرفت دانش مکانیک کوانتوم نقش کلیدی داشته‌است.

گاز هیدروژن (با نماد H۲) نخستین بار در سدهٔ ۱۶ میلادی به صورت آزمایشگاهی از واکنش اسیدهای قوی با فلزهایی مانند روی بدست آمد (۱۷۶۶ تا ۸۱). هنری کاوندیش نخستین کسی بود که دریافت گاز هیدروژن برای خود، یک مادهٔ جداگانه‌است.و از سوختن آن آب پدید می‌آید. دلیل نامگذاری هیدروژن هم همین ویژگی آن است به معنی آبساز در زبان یونانی. در شرایط استاندارد دما و فشار هیدروژن عنصری است بی رنگ، بی بو، بی مزه، نافلز، غیرسمّی یک ظرفیتی، گازی دو اتمی، بسیار آتشگیر و با فرمول شیمیایی H۲.

در صنعت برای تولید هیدروژن از گاز طبیعی بهره می‌برند و کمتر به الکترولیز آب روی می‌آورند. بیشتر هیدروژن تولیدی در نزدیکی محل تولید، در فرایند سوخت سنگواره‌ای (مانند کراکینگ) و تولید آمونیاک برای ساخت کود شیمیایی، مورد بهره برداری قرار می‌گیرد. امروزه دانشمندان در تلاش اند تا جلبک‌های سبز را در تولید هیدروژن بکار ببندند.

در دانش فلزشناسی، تردی هیدروژنی بسیاری فلزها مورد بررسی است تا با کمک آن در طراحی لوله‌ها و مخزن‌ها دگرگونی‌هایی پدید آورند.

 

سوختن:

گاز هیدروژن (دی‌هیدروژن یا مولکول هیدروژن) بسیار آتشگیر است و می‌تواند در هوا و در بازهٔ گسترده‌ای از غلظت، میان ۴٪ تا ۷۵٪ حجمی، بسوزد. آنتالپی سوختن برای هیدروژن ۲۸۶ کیلوژول بر مول است:

2 H۲(g) + O۲(g) → 2 H۲O(l) + ۵۷۲ kJ (۲۸۶ kJ/mol)

اگر هیدروژن با هوا آمیخته شود و غلظت آن میان ۴ تا ۷۴ درصد باشد و یا آمیزه‌ای از هیدروژن و کلر با درصد ۵ تا ۹۵ درصد می‌تواند ماده‌ای انفجاری را پدید آورد. این آمیزه‌های گازی با یک جرقه، کمی گرما یا نور خورشید بی درنگ منفجر می‌شود. دمای خودآتشگیری هیدروژن، دمایی که هیدروژن در آن خود به خود در هوا آتش می‌گیرد، ۵۰۰ درجهٔ سانتیگراد یا ۹۳۲ فارنهایت است.از شعلهٔ سوختن هیدروژن-اکسیژن خالص پرتوهایفرابنفش تابیده می‌شود که برای چشم ناپیدایند. مانند شعله‌ای که در موتور اصلی شاتل فضایی در اثر سوختن هیدروژن-اکسیژن پدید آمده بود. برای ردیابی نشتی در هیدروژن در حال سوختن نیاز به ابزارهایردیابی شعله داریم، چنین نشتی‌هایی می‌توانند بسیار خطرناک باشند. فاجعهٔ آتشگیری فضاپیمای هیندنبرگ یک نمونهٔ ننگین از سوختن هیدروژن است دلیل این آتش‌سوزی مورد بررسی است اما شعله و آتشی که از بیرون دیده شد به دلیل سوختن دیگر مواد روی این فضاپیما بود. چون هیدروژن سبک است و در هوا شناور می‌شود شعلهٔ آتش هیدروژن خیلی زود بالا رفت و نسبت به سوخت‌های هیدروکربنی خرابی کمتری به بار آورد. دو-سوم سرنشینان این فضاپیما از آتش سوزی جان سالم به در بردند. بیشتر کشته‌ها به دلیل سقوط و یا آتشگیری سوخت دیزل بود.

H۲ می‌تواند با هر عنصر اکسید شده‌ای وارد واکنش شود همچنین می‌تواند در دمای اتاق به صورت خود به خودی و البته خطرآفرین با کلر وفلوئور واکنش دهد و هالیدهای هیدروژن، هیدروژن کلرید و هیدروژن فلوئورید را پدید آورد. این هالیدها خود اسیدهای خطرناکی اند.

 

تراز انرژی الکترونی : 

تراز انرژی الکترون در اتم هیدروژن در پایین ترین سطح خود یا حالت صفر، ۱۳٫۶- الکترون‌ولت است. که برابر است با یک فوتون فرابنفش با طول موجی نزدیک به ۹۲ نانومتر.

تراز انرژی هیدروژن را می‌توان با کمک مدل اتمی بور، نزدیک به دقیق بدست آورد. در مدل بور فرض بر این است که الکترون‌ها در اتم مانند زمین که به گِرد خورشید می‌گردد، به گِرد پروتون (هستهٔ اتم) می‌چرخند. البته نیروی الکترومغناطیسی میان الکترون‌ها و پروتون‌ها ربایش پدید می‌آورد مانند سیاره‌ها که به خاطر نیروی گرانش سوی ستاره‌ها رباییده می‌شوند. در دوران آغازین مکانیک کوانتوم، چنین انگار شده بود که تکانهٔ زاویه‌ای کمیتی گسسته‌است درنتیجه الکترون در مدل بور اجازه داشت در فاصله‌های مشخصی از پروتون جای گیرد و درنتیجه انرژی آن هم با مقدارهای مشخصی برابر می‌شد.

برای دریافت توضیح دقیق تری دربارهٔ اتم هیدروژن باید به رفتار آن در مکانیک کوانتوم نگاه کرد. با توجه به معادلهٔ شرودینگر و فرمول انتگرالی فاینمن می‌توان رفتار احتمالاتی الکترون به گِرد پروتون را محاسبه کرد.برپایهٔ مکانیک کوانتوم، الکترون در یک اتم هیدروژن در حالت تراز صفر، هیچگونه تکانهٔ زاویه‌ای ندارد، تفاوت میان همانندسازی گردش الکترون‌ها به منظومهٔ خورشیدی و آنچه در عمل رخ می‌دهد اینجا است.

 

ساختار مولکولی :

دو اسپین متفاوت برای همپارهای مولکول دو اتمی هیدروژن وجود دارد که در آن، تفاوت در اسپین هسته‌ها نسبت به یکدیگر است. در ساختار راست‌هیدروژن (اورتوهیدروژن) اسپین دو پروتون هم‌سو است و با عدد کوانتومی اسپین مولکول ۱ (½+½) یک حالت سه گانه می‌سازد. در پاراهیدروژن اسپین‌ها ناهم‌سو است درنتیجه با عدد کوانتومی اسپین ۰ (½–½) یک یگانه را می‌سازد. در دما و فشار استاندارد، ساختار ۲۵٪ از گاز هیدروژن به صورت پارا و ۷۵٪ آن به صورت راست یا اورتو است که به آن «ساختار معمولی» هم گفته می‌شود. نسبت تعادلی هیدروژن پارا به راست (اورتو) به دمای آن بستگی دارد اما چون ساختار راست یک حالت برانگیخته است و تراز انرژی بالاتری نسبت به پارا دارد، ناپایدار است و نمی توان آن را پالایید. در دمای بسیار پایین می توان گفت حالت تعادل تنها از پارا ساخته شده‌است. ویژگی‌های گرمایی پاراهیدروژن پالاییده در حالت‌های گازی و مایع، با ساختار معمولی بسیار متفاوت است و این از آنجا است که ظرفیت گرمایی گردشی آن‌ها متفاوت است. (نگاه کنید به اسپین همپارهای هیدروژن) تفاوت‌های پارا و راست در مولکول‌های دیگری که هیدروژن دارند و یا در گروه‌های عاملی نیز دیده می‌شود. برای نمونه آب و متیلن چنین اند اما این تفاوت در ویژگی‌های گرمایی آن‌ها بسیار ناچیز است.برای نمونه نقطهٔ ذوب و جوش پاراهیدروژن ۰٫۱ کلوین از هیدروژن راست (اورتو) پایین تر است.

با افزایش دما، تغییر ویژگی‌های هیدروژن از پارا به راست (اورتو) افزایش می‌یابد و پس از اندکی H۲ فشرده سرشار از ساختار پُرانرژی اورتو می‌شود، ساختاری که با کندی بسیار به ساختار پارا باز می‌گردد. نسبت اورتو/پارا در هیدروژن فشرده، نکتهٔ کلیدی در آماده‌سازی و ذخیرهٔ هیدروژن مایع است که باید آن را در نظر داشت. فرایند دگرگونی هیدروژن از راست (اورتو) به پارا گرمازا است و آنقدر گرما تولید می‌کند که باعث بخار شدن بخشی از هیدروژن مایع شود. در این فرایند از آسان‌گرهایی مانند زغال فعال، اکسید آهن(III)، آزبست پلاتینی، برخی فلزهای کمیاب، ترکیب‌های اورانیوم، اکسید کروم(III) و برخی ترکیب‌های نیکلکمک گرفته می‌شود. این آسان‌گرها هنگام خنک سازی هیدروژن افزوده می‌شوند.

 

کوالانت و ترکیبهای آلی:

هیدروژن از سبک ترین گازها است و می‌تواند با بیشتر عنصرها وارد واکنش شود در حالی که در حالت مولکولی، H۲ در شرایط استاندارد چندان واکنش پذیر نیست. هیدروژن الکترونگاتیوی ۲٫۲ دارد و می‌تواند با عنصرهایی که الکترونگاتیوی بیشتری دارند مانند هالوژن‌ها (مانند F، Ca، Br و I) و یا اکسیژن وارد واکنش شود. در تمامی این واکنش‌ها هیدروژن بار مثبت به خود می‌گیرد.هیدروژن در ترکیب با فلوئور، اکسیژن یا نیتروژن پیوندی غیرکووالانسی با توانمندی میانگین به نام پیوند هیدروژنی برقرار می‌کند. این پیوند در پایداری بسیاری از مولکول‌های زیستی نقش اساسی دارد. همچنین هیدروژن این توان را دارد که با عنصرهایی با الکترونگاتیوی کمتر مانند فلزها و شبه‌فلزها وارد واکنش شود. در این صورت هیدروژن بار منفی به خود می‌گیرد. این گونه ترکیب‌ها بیشتر با نام هیدرید شناخته می‌شوند.

هیدروژن می‌تواند رشته‌های ترکیب‌های گسترده‌ای را با کربن پدید آورد. این ترکیب‌ها، هیدروکربن نام دارند. بیش از این، رشته ترکیب‌های هیدروژن با ناجوراتم‌ها هم وجود دارد که از هیدروکربن‌ها هم گسترده تر است و به دلیل ارتباطی که میان آن‌ها و اندام‌های زنده وجود دارد به آن‌ها ترکیب‌های آلی گفته می‌شود. و دانش بررسی ویژگی‌های چنین ترکیب‌هایی شیمی آلی نام دارد. و چنان که این بررسی در زمینهٔ ساز و کار اندامک‌های زنده باشد زیست‌شیمی خوانده می‌شود. البته تعریف دیگری هم وجود دارد: برخی بر این باور اند که هر ترکیبی که کربن داشته باشد ترکیب آلی نام دارد، هرچند، بیشتر این ترکیب‌های کربنی دارای هیدروژن اند.امروزه میلیون‌ها هیدروکربن در جهان شناخته شده‌است که برای ساخت بسیاری از آن‌ها از فرایندهای پیچیده‌ای بهره برده شده‌است.

 

هیدریدها :

بیشتر ترکیب‌های هیدروژن، هیدرید نام دارند. عبارت هیدرید نشان می‌دهد که در آن ترکیب اتم هیدروژن بار منفی یا آنیون به خود گرفته و به صورت -H نمایش داده می‌شود. این حالت زمانی پیش می‌آید که هیدروژن با عنصرهایی که دوست دارند الکترون از دست دهند، ترکیب شود. این مطلب نخستین بار توسط گیلبرت لوویس در سال ۱۹۱۶ برای هیدریدهای گروه یک و دو پیشنهاد شد؛ پس از آن مورئر، در سال ۱۹۲۰ با کمک الکترولیز لیتیم هیدرید مذاب، درستی این پدیده را نشان داد. همچنین مقدار هیدروژن در آنُد با کمک معادلات استوکیومتری قابل شمارش بود. برای هیدرید عنصرهایی غیر از فلزهای گروه یک و دو، با در نظر گرفتن الکترون‌دوستی پایین هیدروژن، وضعیت کمی متفاوت است. همچنین ترکیب BeH۲ در گروه دو، یک پلیمری و استثنا است. در لیتیم آلومینیوم هیدرید، آنیون AlH−۴ مرکزهای هیدریدی را با خود می‌برد در حالی که به سختی با Al(III) در پیوند اند.
 
هیدریدها تقریبا با همهٔ عنصرهای گروه اصلی ساخته می‌شوند ولی شمار و آمیزش آن‌ها متفاوت است. برای نمونه بیش از ۱۰۰ هیدرید بور دوتایی شناخته شده‌است درحالی که تنها یک هیدرید آلومینیم دوتایی داریم و هیدرید ایندیم دوتایی هنوز شناخته نشده‌است هرچند که ترکیب‌های پیچیده تر وجود دارند.
 
در شیمی معدنی، هیدریدها به عنوان یک پل لیگاندی یا لیگاند واسطه هم کاربرد دارند؛ به این ترتیب که میان دو مرکز فلزی در ترکیب‌های کمپلس ارتباط برقرار می‌کنند. این کاربرد هیبرید بیشتر در میان عنصرهای گروه ۱۳ بویژه در هیدریدهای بور، کمپلکس‌های آلومینیم و کربوران‌های خوشه دار دیده می‌شود.
 
پروتون‌ها و اسیدها:
 
هیدروژن با اکسید شدن الکترون خود را از دست می‌دهد درنتیجه H+ بدست می‌آید که تنها دارای یک هسته‌است که خود آن هسته تنها یک پروتون دارد. به همین دلیل H+ را پروتون نیز می‌نامند. این ویژگی در بحث واکنش‌های اسیدها در خور توجه‌است. برپایهٔ نظریهٔ اسید و باز برونستد-لاری اسیدها دهندهٔ پروتون و قلیاها گیرندهٔ پروتون اند.
 
پروتون یا H+ را نمی توان به صورت تکی در یک محلول یا بلور یونی پیدا کرد، این به دلیل ربایش بسیار بالای آن به الکترون اتم‌ها یا مولکول‌های دیگر است. مگر در دماهای بسیار بالای مرتبط با حالت پلاسما. چنین پروتون‌هایی را نمی توان از ابر الکترونی اتم یا مولکول جدا کرد بلکه چسبیده به آن‌ها باقی می‌ماند. البته گاهی از عبارت «پروتون» برای اشاره به هیدروژن با بار مثبت یا کاتیون که در پیوند با دیگر مواد است هم استفاده می‌شود.
 
ایزوتوپ‌ها :
 
پروتیوم، معمولی‌ترین ایزوتوپ هیدروژن فاقد نوترون است گرچه دو ایزوتوپ دیگر به نام دوتریوم دارای یک نوترون و تریتیوم رادیو اکتیویته دارای دو نوترون، وجود دارند. دو ایزوتوپ پایدار هیدروژن پروتیوم(H-1) و دیتریوم(D، H-۲) هستند. دیتریوم شامل ۰٫۰۱۸۴-۰٫۰۰۸۲٪ درصد کل هیدروژن است (آیوپاک)؛ نسبتهای دیتریوم به پروتیوم با توجه به استاندارد مرجع آب VSMOW اعلام می‌گردد. تریتیوم(T یا H-3)، یک ایزوتوپ پرتوزا (رادیواکتیو) دارای یک پرتون و دو نوترون است. هیدروژن تنها عنصری است که ایزوتوپ‌های آن اسمی مختلفی دارند.بیشتر ایزوتوپ‌هایی که در طبیعت یافت می‌شوند پایدارند. در واقع تعداد پروتون‌ها و نوترون‌های هستهٔ اتم‌های آن‌ها با گذشت زمان تغییر نمی‌کند. این در حالی است که برخی ایزوتوپ‌ها هسته‌هایی ناپایدار دارند به این معنا که تعداد معینی پروتون دارد تجمع این تعداد ذره با بار مثبت مجموعه‌ای ناپایدار به وجود می‌آورد بنابراین به تعدادی نوترون هم نیاز است تا گردهمایی این تعداد پروتون را امکان پذیر سازد و هسته‌ای پایدار ایجاد کند. اگر هسته‌ای بیش از اندازه نوترون داشته باشد(بیش از ۱/۵ برابر تعداد پروتون‌ها)باز هم ناپایدار می‌شود و زمینه برای تغییر در آن فراهم می‌آید.
 
شناسایی هیدروژن و دست آوردهای پس از آن:
 
 
در سال ۱۶۷۱، رابرت بویل دریافت و توضیح داد که از واکنش میان آهن و یک اسید رقیق باعث تولید گاز هیدروژن می‌شود.پس از او در سال ۱۷۶۶ هنری کاوندیش نخستین کسی بود که گاز هیدروژن را به عنوان یک مادهٔ جداگانه شناخت. ماده‌ای که نتیجهٔ واکنش شیمیایی میان فلز و اسید بوده و البته آتشگیر نیز بوده‌است برای همین وی نام «هوای آتشگیر» را بر آن نهاد. او گمان برد «هوای آتشگیر» در حقیقت همان مادهٔ افسانه‌ای «آتش‌دوست» یا phlogiston است. آزمایش‌های پس از آن در سال ۱۷۸۱ نشان داد که از سوختن این گاز، آب پدید می‌آید. کاوندیش به عنوان کسی که برای نخستین بار هیدروژن را به عنوان یک عنصر دانست، شناخته می‌شود. در سال ۱۷۸۳ لاوازیه و لاپلاس هنگامی که یافته‌های کاوندیش را آزمودند و دیدند که از سوختن این گاز، آب پدید می‌آید به پیشنهاد لاوازیه نام هیدروژن را برای آن برگزیدند. هیدروژن به معنی سازندهٔ آب یا آبزا، از واژهٔ یونانی ὕδρω یا hydro به معنی «آب» و γενῆς یا genes به معنی «سازنده» ساخته شده‌است.
 
لاوازیه در آزمایش‌های سرشناس خود دربارهٔ بقای ماده، از واکنش میان بخار آب با فلز آهنی که در آتش به شدت داغ و دچار تابش شده بود، به تولید هیدروژن دست یافت. اکسید کردن آهن در یک فرایند بدون هوا با کمک پروتون‌های آب در دمای بسیار بالا از واکنش‌های زیر پیروی می‌کند:
 
   Fe +    H۲O → FeO + H۲
2 Fe + 3 H۲O → Fe۲O۳ + 3 H۲
3 Fe + 4 H۲O → Fe۳O۴ + 4 H۲
 
زیرکونیم و بسیاری دیگر از فلزها اگر همین فراید را با آب داشته باشند باز به تولید هیدروژن می‌رسند.
 
نخستین بار در سال ۱۸۹۸ جیمز دیوئر توانست هیدروژن را در فرایند احیاکنندهٔ سرما و با کمک چندی از ابتکارهای خودش مانند فلاسک خلاء مایع کند. او یک سال بعد توانست هیدروژن را جامد کند. در دسامبر ۱۹۳۱، هارولد یوری توانست دوتریوم و پس از او در ۱۹۳۴ ارنست رادرفورد، مارک اولیفانت و پاول هارتک توانستند تریتیوم را بدست آورند.در ادامه، آب سنگین که به جای هیدروژن معمولی از دوتریوم ساخته شده را گروه اوری در ۱۹۳۲ بدست آوردند. در سال ۱۸۰۶ فرانسوآ ایزاک دو ریواز نخستین ماشین درون سوز با سوخت آمیزه‌ای از هیدروژن و اکسیژن را ساخت و ادوارد دانیل کلارک لوله‌های دم دهندهٔ هیدروژن را در سال ۱۸۱۹ درست کرد. روشنایی کلسیم و لامپ دوبرانر هم نخستین بار در سال ۱۸۲۳ درست شدند.
 
نخستین نسل زیپلین‌ها در آسمان:
 
نخستین بادکنک هیدروژنی را ژاک شارل در ۱۷۸۳ پدید آورد،اما هنری گیفارد نخستین کسی بود که توانست از این بادکنک‌های هیدروژنی یک وسیلهٔ جابجایی در آسمان بسازد و به اندازهٔ کافی در هوا بالا رود. او در سال ۱۸۵۲ به این کامیابی دست یافت. پس از آن فردیناند زپلین آلمانی پیشنهاد ساخت یک کشتی پرنده را داد و در سال ۱۹۰۰ نخستین زپلین در آسمان به پرواز در آمد. با آمدن این ابزار مسافرت‌های هوایی ممکن شد تا آنجا که از سال ۱۹۱۰ تا ۱۹۱۴ که جنگ جهانی اول آغاز شد، ۳۵،۰۰۰ مسافر بدون هیچ حادثهٔ جدی در آسمان جابجا شدند. در طول جنگ هم این ابزار به عنوان دیده بان و یا بمب افکن کاربرد داشت.
 
کشتی‌های هوایی بریتانیایی آر۳۴ که در سال ۱۹۱۹ ساخته شد می‌توانست عرض اقیانوس اطلس را بدون توقف طی کند. پس از آن در دههٔ ۱۹۲۰ پروازهای مرتب برای مسافرین فراهم شد. با شناسایی گاز هلیم توسط آمریکایی‌ها امید آن بود که این مسافرت‌ها از امنیت بیشتری برخوردار شوند. اما دولت آمریکا نپذیرفت که هلیوم را برای این هدف بفروشد. برای همین به ناچار این کشتی‌های فضایی همچنان با هیدروژن کار می‌کردند. کشتی هوایی هیندنبورگ که در ۶ مه ۱۹۳۷ در آسمان نیوجرسی آتش گرفت هم با گاز H۲ پرواز می‌کرد. این رویداد به صورت زنده از رادیو پخش می‌شد و از آن فیلم گرفته می‌شد. گمان آن می‌رفت که آتش سوزی به دلیل نشت گاز هیدروژن رخ داده‌است اما چندی بعد بررسی‌ها نشان داد که از جرقهٔ میان تارهای آلومینیمی در اثر الکتریسیتهٔ ساکن آتش سوزی روی داده‌است اما هر چه بود این رویداد باعث از بین رفتن اعتماد عمومی نسبت به ابزارهای پروازی به کمک گاز هیدروژن شد.
 
در سال ۱۹۷۷ برای نخستین بار از پیل‌های نیکل‌هیدروژن در سامانهٔ ردیابی ماهواره‌ای نیروی دریایی بهره برده شد. برای نمونه در ایستگاه فضایی بین‌المللی، اودیسهٔ مریخ و نقشه‌بردار سراسر مریخ،[ پیل‌های نیکل‌هیدروژن بکار رفته‌است. تلسکوپ فضایی هابل هم در بخش‌هایی از گردشش که فضا تاریک است از نیرو پیل‌های نیکل‌هیدروژن بهره می‌برد. اما این پیل‌ها در مه سال ۲۰۰۹ جایگزین شدند.
 
نقش هیدروژن در کسترش نظریه کوانتوم :
 
 
ساختار اتمی نسبتا سادهٔ هیدروژن یعنی اینکه تنها دارای یک پروتون و یک الکترون بود و افزون بر آن، طیف نوری که از هیدروژن تابیده می‌شد و یا توسط هیدروژن دریافت می‌شد، همگی در گسترش نظریهٔ ساختار اتم بسیار کمک‌کار بودند.سادگی ساختار مولکول هیدروژن و کاتیون H۲+ کمک کرد تا شناخت بهتری از پیوندهای شیمیایی بدست آید. این دستاورد اندکی پس از بیان نظریهٔ رفتار مکانیک کوانتوم اتم هیدروژن در میانهٔ دههٔ ۱۹۲۰، بدست آمد.
 
یکی از اثرها و ویژگی‌های کوانتومی که به خوبی دیده شد (اما در آن هنگامه فهمیده نشد) مشاهدات ماکسول در زمینهٔ هیدروژن بود که نیم قرن پیش از رسیدن به نظریهٔ مکانیک کوانتوم روی داد. ماکسول مشاهده کرد که ظرفیت گرمایی H۲ در دماهای زیر دمای اتاق به سرعت از انرژی گرمایی گازهای دو اتمی دور و به تک اتمی‌ها نزدیک می‌شود. برپایهٔ نظریهٔ کوانتوم این رفتار به فاصلهٔ میان ترازهای انرژی دورانی باز می‌گردد که بویژه در H۲ به دلیل جرم کوچک آن، با هم فاصلهٔ زیادی دارند این ترازهای بافاصله، از پخش شدن یکنواخت انرژی گرمایی در حرکت دورانی هیدروژن در دمای پایین پیشگیری می‌کند. گازهای دو اتمی که از اتم‌های سنگین تری ساخته شده‌اند دارای چنین ترازهای با فاصلهٔ انرژی نیستند و نمی‌توانند چنین رفتاری را از خود نشان دهند.
 
 پیدایش : 
 
هیدروژن فراوانترین عنصر در جهان است تا آنجا که ۷۵٪ جرم مواد طبیعی از این عنصر ساخته شده و بیش از ۹۰٪ اتم‌های سازندهٔ آنها اتم هیدروژن است و البته گمان آن می‌رود که جرم‌های ناشناخته مانند مادهٔ تاریک و انرژی تاریک هم چنین ساختاری داشته باشند. هیدروژن و ایزوتوپ‌های آن به فراوانی در ستاره‌ها و سیاره‌های غول‌های گازی یافت می‌شوند. هیدروژن از راه واکنش‌های پروتون-پروتون و چرخهٔ سی‌ان‌او در همجوشی هسته‌ای نقشی کلیدی در زاییده شدن، درخشان شدن و پُرتوان شدن یک ستاره بازی می‌کند چون ابرهای مولکول هیدروژن رابطه‌ای مستقیم با زایش یک ستاره دارند.
 
در سراسر کیهان، هیدروژن بیشتر در حالت اتمی و یا پلاسمایی دیده می‌شود. در حالت پلاسما ویژگی‌های ماده کاملا متفاوت از ویژگی‌های آن در حالت مولکولی است چرا که در این وضعیت الکترون و پروتون دیگر در بند یکدیگر نیستند درنتیجه رسانش الکتریکی و تابش بسیار بالایی در ماده رخ می‌دهد (نوری که از خورشید و دیگر ستارگان تابیده می‌شود) و ذره‌های باردار به شدت زیر تاثیر میدان‌های مغناطیسی و الکتریکی قرار دارند. برای نمونه بادهای خورشیدی که با مغناط‌کرهٔ زمین در اندرکنش قرار می‌گیرد و باعث بوجود آمدن شفق قطبی و جریان‌های بیرکلند در زمین می‌شوند، چنین اند.
 
برخلاف فراوانی زیاد هیدروژن در کیهان، غلظت این عنصر در هواکرهٔ زمین بسیار کم است (۱ ppm برحسب حجم) و این بیشتر به دلیل سبکی این گاز نسبت به دیگر گازها است که می‌تواند آسان تر از میدان گرانش زمین بگریزد هیدروژن گازی هم که در زمین یافت می‌شود بیشتر به صورت مولکول دو اتمی H۲ دیده می‌شود. با وجود تمام این توضیح‌ها، از دیدگاه فراوانی، هیدروژن سومین عنصر فراوان در سطح زمین است[و این به دلیل حضور آن در بیشتر ترکیب‌های شیمیایی مانند هیدروکربن‌ها و آب است. آب در دسترس ترین سرچشمهٔ هیدروژن در زمین است که از دو بخش هیدروژن و یک بخش اکسیژن (H۲O) ساخته شده‌است.
 
همچنین هیدروژن در بیشتر گونه‌های مواد آلی که در اندام‌های زنده کاربرد دارند پیدا می‌شود، زغال، سوخت فسیلی و گاز طبیعی. متان (CH۴)، که یکی از محصولات فرعی فساد ترکیبات آلی است همگی دارای هیدروژن اند. گاز هیدروژن توسط باکتری‌ها و جلبک‌ها ساخته می‌شود و البته یکی از سازندگان طبیعی باد شکم است.
 
هیدروژن از راه‌های گوناگون بدست می‌آید، گذر بخار از روی کربن داغ، تجزیه هیدروکربن بوسیلهٔ حرارت، واکنش هیدروکسید سدیم یا پتاسیم بر آلومینیوم، الکترولیز آب و یا از جابجایی آن در اسیدها توسط فلزات خاص.
 
تولید : 
 
در آزمایشگاه‌های زیست شناسی و شیمی می توان گاز هیدروژن را تولید کرد. این گاز معمولا محصول کناری دیگر واکنش‌ها است.
 
در آزمایشگاه :
 
در آزمایشگاه با کمک دستگاه کیپ می توان از واکنش اسیدها با فلزهایی مانند روی، هیدروژن بدست آورد:
 
Zn + ۲ H+ → Zn۲+ + H۲
 
از واکنش آلومینیم با قلیاها هم می توان به نتیجه رسید:
 
۲ Al + ۶ H۲O + ۲ OH− → ۲ Al(OH)−۴ + ۳ H۲
 
آبکافت آب هم یک روش آسان برای تولید هیدروژن است. با گذر یک جریان کم ولتاژ از آب می توان گاز اکسیژن را در آنُد و گاز هیدروژن را در کاتُد جمع کرد. برای جمع آوری هیدروژن معمولا کاتد از پلاتین یا یک فلز واسطهٔ دیگر برگزیده می‌شود. البته چون امکان آتش گرفتن وجود دارد و اکسیژن هم به این سوختن کمک می‌کند برای همین فلز کاتد و آند هر دو واسطه در نظر گرفته می‌شود (آهن اکسید می‌شود و مقدار اکسیژن بدست آمده را کاهش می‌دهد). بیشترین بازده نظری این واکنش یعنی نسبت جریان الکتریسیته به هیدروژن تولیدی میان ۸۰ تا ۹۴ درصد است.
 
۲ H۲O(l) → ۲ H۲(g) + O۲(g)
شیمیدانان در سال ۲۰۰۷ دریافتند که اگر آلیاژی از گالیم و آلومینیم را به صورت گلوله‌ای در آورند و در آب بیاندازند می‌تواند هیدروژن تولید کند. همچنین این فرایند آلومینا هم پدید می‌آورد. در این میان گالیم نمی‌گذارد که لایه‌ای از اکسیژن بر روی گلوله ساخته شود و البته گالیم پس از واکنش دوباره قابل استفاده‌است و این به دلیل گرانی این فلز نکتهٔ مهمی است. این روش از نظر کاهش هزینه هم درخور توجه‌است چرا که هیدروژن در همانجا تولید می‌شود و دیگر نیازی به جابجایی دارد.
 
منبع : www.wikipedia .org
 
 

 

نظرات

می توانید دیدگاه خود را بنویسید

نام
ایمیل (منتشر نمی‌شود) (لازم)
وبسایت
:) :( ;) :D ;)) :X :? :P :* =(( :O @};- :B /:) :S
نظر خصوصی
مشخصات شما ذخیره شود ؟ [حذف مشخصات] [شکلک ها]
کد امنیتی

تگ ها